Progress of power field effect transistor based on ultra-wide bandgap Ga₂O₃ semiconductor material

Hang Dong^{1, 2}, Huiwen Xue^{1, 2}, Qiming He^{1, 2}, Yuan Qin^{1, 2}, Guangzhong Jian^{1, 2}, Shibing Long^{1, 2, 3, †}, and Ming Liu^{1, 2}

¹Key Laboratory of Microelectronic Devices & Integration Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³School of Microelectronics, University of Science and Technology of China, Hefei 230026, China

Abstract: As a promising ultra-wide bandgap semiconductor, gallium oxide (Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field (8 MV/cm), ultra-wide bandgap (~ 4.8 eV) and large Baliga's figure of merit (BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor (FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.

Key words: gallium oxide (Ga₂O₃); ultra-wide bandgap semiconductor; power device; field effect transistor (FET)

Citation: H Dong, H W Xue, Q M He, Y Qin, G Z Jian, S B Long, and M Liu, Progress of power field effect transistor based on ultrawide bandgap Ga₂O₃ semiconductor material[J]. *J. Semicond.*, 2019, 40(1), 011802. http://doi.org/10.1088/1674-4926/40/1/011802

1. Introduction

The development of power electronics technology is closely related to the performance of power devices. The emergence of new-generation power devices and power integrated circuits has greatly improved the efficiency and power density of power electronic systems^[1]. However, plenty of scientific and technical problems of power semiconductor electronics have to be settled urgently due to continuous development requirements including high operation voltage, large current density, fast switching speed, low energy loss etc.^[2]. The range of power semiconductor has been extended from silicon to wide bandgap semiconductor (such as SiC, GaN, etc.), recently to ultra-wide bandgap semiconductor materials provide new development opportunities for power electronics technology.

As a promising ultra-wide band gap semiconductor, Ga_2O_3 has an enormous potential for the next-generation power electronic application due to its large bandgap (~4.8 eV), high breakdown field (8 MV/cm), adjustable n-type doping concentration (10^{15} – 10^{19} cm⁻³) and availability of high quality large area native substrate from low cost melt-based growth methods^[7–10]. As shown in Table 1, owing to its advantages, the Ga_2O_3 material is very suitable for fabricating high power devices, including Schottky barrier diode (SBD) and field effect transistor (FET)^[11–20]. In this case, there is an increasing number of papers that report the substrate and epitaxial growth technology, doping and defect properties, and devices fabrica-

tion in the last several years.

As well-known, field effect transistor is a significant component of power electronics for high voltage and high frequency applications, such as inverters, amplifiers and power switches. In this paper, we firstly review the physical properties of Ga₂O₃ semiconductor, and then summarize the recent development of Ga₂O₃ based FETs through comparing the device performances including breakdown voltage (V_{br}), transconductance (g_m), maximum current density (J_{max}) and on/off ratio, as well as device structures. Though the investigation on Ga₂O₃ based FET is still in the early stage, the material potential has been preliminarily revealed. Therefore, an overview is beneficial for the further development of Ga₂O₃ based power electronics.

2. Basic properties of gallium oxide semiconductor material

Though Ga₂O₃ single crystal growth technology is developed recently, its compound has a relatively long research history. As early as 1952, the investigation on the phase equilibria in the Al₂O₃-Ga₂O₃-H₂O system was carried out and various polymorphs were determined by Roy *et al.*^[21]. In 1965, Tippins *et al.* observed the optical absorption and photoconductivity of β -Ga₂O₃ and confirmed its band gap of 4.7 eV^[22], which is in good agreement with recent absorption and angle-resolved photoemission spectroscopy measurements^[23–25]. Since the 1990s, plenty of bulk growth and epitaxy growth technologies of single crystal Ga₂O₃ have been developed, especially in last five years, an increasing number of researchers paying their attention on ultra-wide bandgap Ga₂O₃.

In fact, there have been five phases of Ga_2O_3 , all of which

Correspondence to: S B Long, shibinglong@ustc.edu.cn Received 5 AUGUST 2018; Revised 20 SEPTEMBER 2018. ©2019 Chinese Institute of Electronics

Table 1. Comparison of the physical properties of Si, GaN, SiC and β -Ga₂O₃ semiconductor^[6].

Semiconductor material	Si	GaN	4H-SiC	β -Ga ₂ O ₃
Bandgap <i>E</i> g (eV)	1.1	3.4	3.3	4.7–4.9
Electron mobility μ (cm ² ·V ⁻¹ ·s ⁻¹)	1400	1200	1000	300
Breakdown electric field <i>E</i> _b (MV/cm)	0.3	3.3	2.5	8
Baliga's FOM (<i>εμE</i> _b ³)	1	870	340	3444
Thermal conductivity λ (W·cm ^{-1·K-1})	1.5	2.1	2.7	0.11

Fig. 1. (Color online) Transformation relationships among Ga_2O_3 in different crystalline phases and their hydrates^[21].

can exist stably under normal condition and will convert into other phases at high pressures or high temperatures, as shown in Fig. 1^[21]. From this figure, we can observe that the β phase is the most stable one and other phases will translate into it under high temperature and high moisture. The ε phase is the second-most stable phase of Ga₂O₃^[26, 27], and this phase will keep it steady until 870 °C. The bandgap of ε -Ga₂O₃ is also approximately 4.9 eV, and it has the same hexagonal structure as the common wide bandgap semiconductors GaN and SiC^[28, 29]. The α phase is the third stable single crystal of Ga₂O₃, and its highest stable temperature is 600 °C under dry condition, which drops to 300 °C under wet condition. The *a* phase have the same corundum crystal structure as α -Al₂O₃, leading to the possibility of epitaxial growth of high guality Ga₂O₃ layer on sapphires. In addition, the melting point of β -Ga₂O₃ is about 1793 °C^[30]. Therefore, only β -Ga₂O₃ can be grown through melting methods, while others not due to phase transition, which is the major reason for the rapid development of β -Ga₂O₃. What's more, the β phase has the lowest volume expansion and bulk moduli through theoretical calculation^[31]. In this paper, we mainly review the research progress on β -Ga₂O₃ and its power FET devices.

 β -Ga₂O₃ belongs to monoclinic system, C2/m space group, and its lattice constants are a = 1.22 nm, b = 0.3 nm, c = 0.58 nm, and $\beta = 103.83^{\circ}$. The lattice constant value in the direction of (100) is much larger than those in (001) and (010), which means that it is easy to exfoliate the ultra-thin film from its (100) direction for device preparation. For the crystal structure, the double chain composed of [GaO₆] octahedron is arranged along the *b* axis, and the chains are connected by [GaO₄] tetrahedron. Ga atoms exists in the crystal in two kinds of forms of four and six ligands, as shown in Fig. 2^[32]. The crystalline structure of β -Ga₂O₃ is helpful for the movement of free carriers. However, the conductivity of Ga₂O₃ is limited by its ultra-

Fig. 2. (Color online) Crystal structure of β -Ga₂O₃^[32].

wide bandgap (4.7–4.9 eV). In fact, the intrinsic electrical conduction of β -Ga₂O₃ originates from the free electrons led by the point defects in the crystal, which is the same as ZnO^[33]. As a kind of oxide crystal, oxygen vacancies are pervasive in β -Ga₂O₃, and plenty of theoretical and experimental studies indicate that the oxygen vacancies play the key role in the electrical conduction^[34–36]. It's worth mentioning that it is the oxygen vacancies in Ga₂O₃ crystal that drive many researches on gas sensors, because they can easily adsorb certain gases, such as H₂, CH₄, CO, O₂.etc, and will change the resistivity upon adsorption^[37–40].

 β -Ga₂O₃ has a large bandgap of approximately 4.8 eV and corresponding large estimated critical electric field strength of about 8 MV/cm, about twice that of SiC and GaN. The large bandgap of β -Ga₂O₃ allows its high temperature operation and the large critical field can sustain high voltage operation. However, the poor thermal conductivity of 0.1–0.3 W·cm^{-1·K-1} will limit high temperature capability of Ga₂O₃ based power devices and thermal management will be especially significant^[41-43]. In order to assess the appropriateness of various semiconductors for power electronics application, there are different figures-of-merit (FOM), such as Baliaga's figure of merit (BFOM) for dc conduction losses, Huang's material figure of merit (HMFOM) for dynamic switching losses, etc, most of which involve breakdown field strength^[44, 45]. Through calculation, we find that the BFOM for β -Ga₂O₃ is four times larger than GaN and ten times larger than SiC. Except for its high voltage capability, β -Ga₂O₃ has a predicted high theoretical electron velocity of 2×10^7 cm/s and a measured mobility of $100 \text{ cm}^2/(\text{V} \cdot \text{s})^{[46, 47]}$. These properties are beneficial for low power under high frequency switching in the radio frequency regime, where its power density would be limited by the low thermal conductivity.

As the same as other wide bandgap materials, it is significant for β -Ga₂O₃ to control its electrical conductivity by doping or reduce defects in crystal. The n-type doping technology has been widely used in substrate, and epitaxial layer growth. Ion implantation has been used to reduce the contact resistance. Several common n-type dopants, such as Si, Ge and Sn, are proved to have low activation energy and can be effectively activated at room temperature. In addition, doping concentration can be flexibly modulated in the range of 10^{15} – 10^{19} cm⁻³, with the highest value of 10^{20} cm⁻³ reported^[48]. As for p-type doping, similar to other wide-band semiconductors, it is difficult to obtain low activation energy of acceptors in β -Ga₂O₃.

Fig. 3. (Color online) The development of β -Ga₂O₃ transistor in recent years.

Fig. 4. (Color online) Schematic cross-section of β -Ga₂O₃ (a) MESFET^[12] and (b) MOSFET^[11].

Though Na, Mg, Ca, Cu, Ag, Zn, Cd, etc are likely to be potential candidates for usable p-type dopants^[49], there still have been no breakthrough reported. In addition, the results from theoretical prediction and calculation indicate that the electron effective mass is $0.34m_0$ (here m_0 is the free electron mass), while the hole effective mass is rather large due to local lattice distortions^[50, 51].

Additionally, it's worth noting that the future development of β -Ga₂O₃ needs to overcome the following two difficulties. (1) Develop effective p-type doping process, which determines the destiny of β -Ga₂O₃ based power electronics to some extent. It's well-known that carrier inversion is the unique characteristic of semiconductor and reverse p-n junction can effectively undertake high voltage to give full play to the material advantages of β -Ga₂O₃. (2) Severe self-heating effects caused by the relatively low thermal conductivity of β -Ga₂O₃ must be mitigated in high voltage and high frequency application, though ultra-wide bandgap of β -Ga₂O₃ improve electronics thermal tolerance. What's more, the mobility of carrier will also be reduced due to anabatic scatterings^[46], and will lower switch speed.

3. Field effect transistor based on β -Ga₂O₃

Summing up the above discussion, the physical proper-

ties suggest that β -Ga₂O₃ has a broad prospect in high voltage and high frequency power devices. At present, due to the absence of p-type doping, researchers focus on two kinds of unipolar devices, i.e. Schottky barrier diode (SBD) and field effect transistor (FET). FET is the conventional power switch device in which the resistance between source and drain electrodes is modulated by gate electrical field, and it is mainly used in converters and inverters.

The researching process of β -Ga₂O₃ based field effect transistors is shown in Fig. 3. Transistors develop from MESFET^[12, 52] to planar MOSFET, then to well-performance devices with termination structure as well as vertical ones. Most early transistors work in depletion mode due to the absence of inversion layer in β -Ga₂O₃. Afterwards, researchers take advantage of depletion layer from interface states to realize enhancement mode devices. Recently, vertical transistor with a breakdown voltage of 1 kV have been reported^[14]. Some typical works on transistors will be introduced in the following parts.

In 2012, Higashiwaki *et al.* (from the National Institute of Information and Communications Technology (NICT)) manufactured a metal semiconductor field effect transistor (MESFET) on molecular-beam (MBE) epitaxial layer with Sn doping (7.0 × 10^{17} cm⁻³) on (010) oriental β -Ga₂O₃, as shown in Fig. 4(a)^[12]. This transistor's breakdown voltage reaches 250 V with Pt/Ga₂O₃ Schottky barrier as gate structure, and serious off-state leakage current of 3 μ A, leading to an on/off ratio of 10⁴. Therefore, in 2013, 20 nm Al₂O₃ is used as the gate dielectrics to solve this problem, as Fig. 4(b) shows ^[11], and the source and drain regions are highly doped (5.0 × 10^{19} cm⁻³) by Si to improve Ohmic contact. The device doesn't breakdown until 370 V, and the on/off ratio reaches 10^{10} .

Depletion-mode MOSFET with $V_{\rm br}$ of 750 V was fabricated on MBE epitaxial (010) β -Ga₂O₃ layer with Sn doping of 3.0 × 10¹⁷ cm⁻³ by Wong *et al.* (from Novel Crystal Technology Inc.) in 2016, as shown in Fig. 5(a)^[16]. The highly resistive uninten-

4 Journal of Semiconductors doi: 10.1088/1674-4926/40/1/011802

Fig. 5. (Color online) (a) Schematic cross-section, (b) the off-state drain/gate leakage and breakdown curves, (c) temperature-dependent transfer characteristics at $V_{ds} = 30$ V, and (d) DC and pulsed output curves of the β -Ga₂O₃ FP-MOSFET^[16].

Fig. 6. Top–down SEM image of the two-finger MOSFET on (100) β -Ga₂O₃^[55].

tionally-doped (UID) Ga_2O_3 was implemented to isolate the planar devices successfully. Fig. 5(b) shows that the off-state current primarily comes from drain leakage current with gate leakage being 1–2 orders of magnitude lower. The on/off ratio decreases from 10⁹ to 10³ with rising temperature, as shown in Fig. 5(c), which indicates the transistor can operate stably against thermal stress up to at least 300 °C. In addition, current collapse phenomenon caused by self-heating effect is observed in output curves measured in DC and pulse condition as shown in Fig. 5(d). Therefore, heat management is significant for devices on Ga_2O_3 with relatively low thermal conductivity. The characterization of channel temperature and radiation hardness against gamma ray irradiation of similar devices were also tested and analyzed^[53, 54].

In 2016, Green et al. (from Wright-Patterson Air Force Base

of USA) fabricated a depletion mode transistor on Sn doping (1.7 × 10¹⁸ cm⁻³) epitaxial layer of (100) oriental β -Ga₂O₃, which was grown via metal-organic vapor phase epitaxy (MOVPE). The transistor has a tremendous breakdown voltage of 230 V with a small gate-drain distance of 0.6 μ m^[55]. The experimentally measured breakdown electrical field of 3.8 MV/cm is the highest reported value for Ga₂O₃ transistors, surpassing SiC and GaN theoretical limits, though this value is far smaller than Ga₂O₃'s theoretical value of 8 MV/cm. The representative two-finger structure is adopted, as shown in Fig. 6. This achievement strongly inspired the researchers to make further effort to exploit the advantages of Ga₂O₃.

Though depletion-mode transistors show an excellent performance, including high current density, high breakdown voltage, low on-resistance etc, amounts of researches on enhancement-mode transistors have been also reported due to its unique advantages in application.

In 2016, a wrap-gate fin field-effect transistor operated on enhancement-mode was fabricated on (100) β -Ga₂O₃ by Chabak *et al.* (from Air Force Research Laboratory of USA). Fin array channels are beneficial for depletion by interface states to turn off without gate bias, but on current is limited to ~1 mA/mm^[15]. The device achieved a three-terminal breakdown voltage exceeding 600 V with 21 μ m gate-drain spacing. In December 2017, they reported another recessed-gate enhancement-mode β -Ga₂O₃ MOSFETs, as shown in Fig. 7(a). In this device, the gate recess is self-aligned to the gate region, so the partially removed region is fully depleted by interface state and the channel for normally-off operation is formed. As a result, the on current is promoted to 40 mA/mm with on/off ratio of ~10⁹ and V_{br} of 505 V. From the breakdown current curves in Fig. 7(b), it can be observed that the breakdown per-

Fig. 7. (Color online) (a) SEM false-colored cross-section view of recessed-gate MOSFETs and HR-TEM of (b) its sidewall and (c) bottom facets of the gate-recess contact, (d) its gate-source and drain-source breakdown curves of both source-drain distances^[15].

Fig. 8. (Color online) (a) Schematic cross-section and SEM image, and (b) three-terminal off-state breakdown curves of vertical β -Ga₂O₃ Fin-MIS-FET^[14].

formance is limited by gate dielectric failure.

In March 2017, Wong *et al.* (from NICT) took advantage of fully depleted unintentionally doping (010) β -Ga₂O₃ (with a background carrier concentration of 4×10^{14} cm⁻³) to realize transistor's operation in enhancement mode^[56]. In addition, box-like ion implantation of 5×10^{19} cm⁻³ was applied to decrease contact resistance in source and drain regions. As a consequence, transistors have a maximum saturation current of 1.4 mA/mm when $V_{gs} = 38$ V and $V_{ds} = 15$ V, and on/off ratio near 10⁶. The peak extrinsic transconductance of 0.38 mS/mm is imputed to charge trapping of unoptimized ALD interface.

From the above, we can conclude that effective p-type doping is very significant for investigation of transistors. Without p-n junction structure, the thick gate dielectric is required to undertake too high voltage to excavate the excellent property of Ga_2O_3 . In order to enhance breakdown voltage, vertical field effect transistor is a promising option.

In 2017, Wong *et al.* (from NICT) fabricated a vertical β -Ga₂O₃ MOSFET, and a buried current blocking layer (CBL) was used to electrically isolate the source and drain electrodes^[57]. However, the device has a large source-drain leakage current due to the difficulty in activating p-type dopants in CBL.

In 2017, Hu *et al.* (from Cornell University) attempted to fabricate vertical fin transistor, and though the device has an on/off ratio of 10⁹, the field crowding near the bottom of the column limited $V_{\rm br}$ to 185 V^[58]. Whereafter, in June 2018, they reported a high-voltage (over 1 kV) vertical β -Ga₂O₃ MISFET, distinguished from conventional p-n junction based MOSFET due to no p-region in this device. As shown in Fig. 8(a)^[14], the MISFET was fabricated on halide vapor phase epitaxial (HVPE) layers with low charge concentration of ~10¹⁶ cm⁻³ on bulk β -Ga₂O₃ (001) substrates, and has a nano bar structure to realize enhancement operation with a threshold voltage of ~1.2-2.2 V, and a current on/off ratio of ~108, which demonstrate the well gate modulation of transistor. In addition, an on-resistance of ~13–18 m Ω ·cm² and an output current of over 300 A/cm² were also extracted. Fig. 8(b) shows the three-terminal offstate breakdown curves and indicates that both the drain and gate leakage currents remain low until the hard breakdown near 1057 V. Field plate and ion implantation edge termination techniques are expected to further increase the breakdown voltage. To sum up, this is the first high-breakdown voltage vertical transistor reported and is a milestone for the application of β -Ga₂O₃ based power electronics.

In addition to high voltage, high theoretical electron velocity and high breakdown electrical field make β -Ga₂O₃ a potentially useful material in radio frequency (RF) and mm-wave region, and its power density at high frequency would not be limited by the low thermal conductivity. Therefore, some works in this direction have been reported in succession.

In 2017, Green *et al.* (from the Wright-Patterson Air Force Base of USA) used a highly doped cap layer to decrease con-

H Dong et al.: Progress of power field effect transistor based on ultra-wide bandgap Ga₂O₃

6 Journal of Semiconductors doi: 10.1088/1674-4926/40/1/011802

Fig. 9. (Color online) (a) Cross section schematic, (b) focused ion beam (FIB) cross sectional image, and (c) extrinsic small signal RF gain performance of RF β -Ga₂O₃ MOSFET^[59].

Fig. 10. (Color online) (a) Schematic and (b) density-dependent field effect mobility of Silicon delta-doped β -Ga₂O₃ MESFET.

Fig. 11. (Color online) Depletion/enhancement-mode β -Ga₂O₃ on insulator (GOOI) FETs^[17].

tact resistance, and an incompletely depleted sub-micro gate recess to form modulation channel and attained a RF Ga₂O₃ transistor, as shown in Figs. 9(a) and 9(b)^[59]. A transconductance (g_m) of 21 mS/mm, extrinsic cutoff frequency (f_T) of 3.3 GHz, and maximum oscillating frequency (f_{max}) of 12.9 GHz are measured experimentally, as shown in Fig. 9(c). With a passive source and load tuning at 800 MHz, RF performances including P_{out} of 0.23 W/mm, power gain of 5.1 dB, and power-added efficiency of 6.3%, were confirmed in detail. All results preliminarily suggest that Ga₂O₃ has a potential in applications for power switch and RF electronics.

The Ohio State University devoted themselves to utilize 2dimensinal electron gas from silicon delta-doped β -Ga₂O₃ to fabricate high frequency transistors. In 2017, a delta-doping β -Ga₂O₃ MOSFET with integrated sheet charge of 2.4 × 10¹⁷ cm⁻², mobility of 83 cm²V⁻¹s⁻¹, was manufactured by Krishnamoorthy *et al.*, and drain current I_{max} of 236 mA/mm and transconducance g_m of 26 mS/mm were obtained^[60]. In 2018, Xia *et al.* from the same department fabricated a silicon delta-doped MESFETS with low regrown source/drain contact resistance and UID Ga₂O₃ as gate insulator, as shown in Fig. 10(a)^[61]. The turn-off voltage of 4 V, a peak drain current of 140 mA/mm, g_m of 34 mS/mm and V_{br} of 170 V are obtained. Fig. 10(b) shows the correlation between mobility and 2-D electron gas density. The detailed scattering mechanisms that limit 2DEG mobility is required to further analyze theoretically. Though high frequency parameters weren't reported in the literature, the results indicate that delta doping can be a potential process of the scaled Ga₂O₃ high frequency field effect transistors.

In addition, as mentioned above, β -Ga₂O₃ belongs to monoclinic system with the lattice of a axis longer than other two ones, and nano membrane can be acquired mechanically the same as 2-D materials^[13, 17, 62–65]. Therefore, plenty of film transistors are reported for power application. For instance, in January 2017, the back-gate transistor fabricated by Zhou *et al.* from Purdue University has a high record drain current of 600/450 mA/mm, a high on/off ratio of 10¹⁰ in depletion/enhancement modes, as shown in Fig. 11^[17]. An average breakdown electric field of 2 MV/cm was realized in E-mode devices with a breakdown voltage of 185 V, which shows the great promise of FETs based on β -Ga₂O₃ on insulator for power electronics.

4. Conclusion and future outlook

In conclusion, early researches on transistors mainly focus

Device type	Substrateorientation	Gate dielectrics	V _{br} (V)	J _{max} (mA/mm)	On/off ratio	g _m (mS/mm)	Reference
D-MESFET	(010) β-Ga ₂ O ₃	_	250	_	10 ⁴	1.4	[12]
D-MOSFET	(010) β-Ga ₂ O ₃	Al ₂ O ₃	370	39	10 ¹⁰	—	[11]
E-Fin FET	(100) <i>β</i> -Ga ₂ O ₃	Al ₂ O ₃	600	-	10 ⁵	_	[15]
Two-finger D-MOSFET	(100) <i>β</i> -Ga ₂ O ₃	Al ₂ O ₃	230	60	10 ⁷	1.1	[55]
Field plate D-MOSFET	(010) β-Ga ₂ O ₃	Al ₂ O ₃	750	78	10 ⁹	3.4	[16]
Recessed-gate D-MOSFET	(100) <i>β</i> -Ga ₂ O ₃	AI_2O_3	_	150	10 ⁶	21.2	[59]
E-MOSFET	(010) β-Ga ₂ O ₃	AI_2O_3	_	1.4	10 ⁶	0.38	[56]
D-MOSFET	(010) β-Ga ₂ O ₃	HfO ₂	400	45	10 ⁸	_	[74]
Vertical trench D-MOSFET	(001) β-Ga ₂ O ₃	HfO ₂	_	_	10 ³	_	[75]
Vertical Fin D-MOSFET	(-201) β-Ga ₂ O ₃	AI_2O_3	185	1 kA/cm ²	10 ⁹	_	[58]
D-MOSFET	β -Ga ₂ O ₃	SiO ₂	382	40	10 ⁸	1.23	[76]
Recessed-gate E-MOSFET	(010) β-Ga ₂ O ₃	SiO ₂	505	40	10 ⁹	7	[15]
Vertical Fin E-MISFET	(001) β-Ga ₂ O ₃	AI_2O_3	1057	300-500 kA/cm ²	10 ⁸	_	[14]
Delta doped D-MOSFET	(010) β-Ga ₂ O ₃	_	170	140	10 ⁶	34	[61]

Table 2. Development of Ga_2O_3 FETs and the corresponding performances.

on realizing gate modulation and high breakdown voltage no matter planar and vertical structures. Up to now, the material properties of Ga₂O₃ have not been fully demonstrated experimentally, more investigations on p-type doping and device fabrications are in demand. In addition, low carrier mobility and self-heating effect are also research hotspots. There is no doubt that all efforts taken in FET will be beneficial for future improvement of Ga₂O₃ FET. Table 2 shows the basic performance parameters of some typical β -Ga₂O₃ based FETs reported up to now and apparently indicates their gradual improvement in performances. Based on the available achievements reported, we can summary that

(1) Al_2O_3 and SiO_2 are widely used as gate insulators due to their larger conduction band offset with β -Ga₂O₃ and can effectively prevent gate leakage current. In addition, interfacial property in gate channel region affect the performance of FET, such as gate control ability and switch speed. Therefore, there are many studies focusing on evaluating and improving the interfacial property^[66–72].

(2) High doping by ion implantation, spin-on-glass, or regrown layer are common methods to reduce contact resistance, and annealing can further improve Ohmic contact. Titanium is proved to be the best ohmic electrode metal directly contacting with β -Ga₂O₃^[73].

(3) Depletion-mode transistors have been realized earlier. As for the enhancement-mode, either a low unintentional doping channel or a thin depletion layer by gate region interface states is proved to be effective solution when p-type doping is absent.

(4) The thermal damage should be unswervingly considered as the significant issue in β -Ga₂O₃ based power devices due to its relatively low thermal conductivity.

(5) The large theoretical breakdown electrical field of β -Ga₂O₃ can make a tradeoff between mobility and power loss during the high voltage and high frequency operation. In order to exert the advantages of β -Ga₂O₃, it's necessary to scale down the gate length for high frequency application, and to develop vertical FETs for high voltage application.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61521064, 61522408, 61574169, 61334007, 61474136, 61574166), the Ministry of Science and Technology of China (Nos. 2016YFA0201803, 2016YFA02038 00, 2017YFB0405603), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Nos. QYZDB-SSW-JSC048, QYZDY-SSW-JSC001), the Beijing Municipal Science and Technology Project (No. Z171100002017011), and the Opening Project of the Key Laboratory of Microelectronic Devices & Integration Technology, Institute of Microelectronics of Chinese Academy of Sciences

References

- Millan J, Godignon P, Perpina X, et al. A survey of wide bandgap power semiconductor devices. IEEE Trans Power Electron, 2014, 29(5), 2155
- [2] Baliga B J. Fundamentals of power semiconductor devices. New York: Springer Science & Business Media, 2010
- [3] Chow T P, Omura I, Higashiwaki M, et al. Smart power devices and ICs using GaAs and wide and extreme bandgap semiconductors. IEEE Trans Electron Devices, 2017, 64(3), 856
- [4] Fujita S. Wide-bandgap semiconductor materials: For their full bloom. Jpn J Appl Phys, 2015, 54(3), 030101
- [5] Higashiwaki M, Sasaki K, Kuramata A, et al. Development of gallium oxide power device. Phys Status Solidi A, 2014, 211(1), 21
- [6] Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga₂O₃ power devices. Semicond Sci Technol, 2016, 31(3), 034001
- [7] Ueda N, Hosono H, Waseda R, et al. Synthesis and control of conductivity of ultraviolet transmitting β -Ga₂O₃ single crystals. Appl Phys Lett, 1997, 70(26), 3561
- [8] Víllora E G, Shimamura K, Yoshikawa Y, et al. Large-size β -Ga₂O₃ single crystals and wafers. J Cryst Growth, 2004, 270(3/4), 420
- [9] Aida K N H, Takeda H, Aota N, et al. Growth of β -Ga₂O₃ single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47(11), 8506
- [10] Higashiwaki M, Konishi K, Sasaki K, et al. Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga₂O₃ (001) Schottky barrier diodes fabricated on n-Ga₂O₃ drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 2016, 108(13), 133503
- [11] Higashiwaki M, Sasaki K, Kamimura T, et al. Depletion-mode Ga_2O_3 metal-oxide-semiconductor field-effect transistors on β - Ga_2O_3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 2013, 103(12), 123511
- [12] Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga_2O_3) metal-semiconductor field-effect transistors on single-crystal β - Ga_2O_3 (010) substrates. Appl Phys Lett, 2012, 100(1), 013504
- [13] Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect

8 Journal of Semiconductors doi: 10.1088/1674-4926/40/1/011802

transistors with wide-bandgap β -Ga₂O₃ nanomembranes. Appl Phys Lett, 2014, 104(20), 203111

- [14] Hu Z, Nomoto K, Li W, et al. Enhancement-mode Ga₂O₃ vertical Transistors with breakdown voltage > 1 kV. IEEE Electron Device Lett, 2018, 39(6), 869
- [15] Chabak K D, McCandless J P, Moser N A, et al. Recessed-gate enhancement-mode β-Ga₂O₃ MOSFETs. IEEE Electron Device Lett, 2018, 39(1), 67
- [16] Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga₂O₃ MOS-FETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2016, 37(2), 212-215
- [17] Zhou H, Si M, Alghamdi S, et al. High performance depletion/enhancement-mode β -Ga₂O₃ on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 2017, 38(1), 103
- [18] He Q, Mu W, Fu B, et al. Schottky barrier rectifier based on (100) β -Ga₂O₃ and its DC and AC characteristics. IEEE Electron Device Lett, 2018, 39(4), 556
- [19] Sasaki K, Wakimoto D, Thieu Q T, et al. First demonstration of Ga₂O₃ trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 2017, 38(6), 783
- [20] Konishi K, Goto K, Murakami H, et al. 1-kV vertical Ga₂O₃ fieldplated Schottky barrier diodes. Appl Phys Lett, 2017, 110(10), 103506
- [21] Roy R, Hill V G, Osborn E F. Polymorphism of Ga₂O₃ and the system Ga₂O₃-H₂O. J Am Chem Soc, 1952, 74, 719
- [22] Tippins H H. Optical absorption and photoconductivity in the band edge of β -Ga₂O₃. Phys Rev, 1965, 140(1A), A316
- [23] Lovejoy T C, Yitamben E N, Shamir N, et al. Surface morphology and electronic structure of bulk single crystal β -Ga₂O₃ (100). Appl Phys Lett, 2009, 94(8), 081906
- [24] Mohamed M, Janowitz C, Unger I, et al. The electronic structure of β-Ga₂O₃. Appl Phys Lett, 2010, 97(21), 211903
- [25] Janowitz C, Scherer V, Mohamed M, et al. Experimental electronic structure of In₂O₃ and Ga₂O₃. New J Phys, 2011, 13(8), 085014
- [26] Ueda O, Ikenag N, Koshi K, et al. Structural evaluation of defects in β -Ga₂O₃ single crystals grown by edge-defined film-fed growth process. Jpn J Appl Phys, 2016, 55(12), 1202B
- [27] Mezzadri F, Calestani G, Boschi F, et al. Crystal structure and ferroelectric properties of epsilon-Ga₂O₃ films grown on (0001)-sapphire. Inorg Chem, 2016, 55(22), 2079
- [28] Xia X, Chen Y, Feng Q, et al. Hexagonal phase-pure wide band gap ϵ -Ga₂O₃ films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Appl Phys Lett, 2016, 108(20), 202103
- [29] Slomski M, Blumenschein N, Paskov P P, et al. Anisotropic thermal conductivity of β -Ga₂O₃ at elevated temperatures: Effect of Sn and Fe dopants. J Appl Phys, 2017, 121(23), 235104
- [30] Hoshikawa K, Oh E, Kobayashi T, et al. Growth of β -Ga₂O₃ single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447, 36
- [31] Yoshioka S, Hayashi H, Kuwabara A, et al. Structures and energetics of Ga₂O₃ polymorphs. J Phys-Condens Mat, 2007, 19(34), 346211
- [32] Åhman J, Svensson G, Albertsson J. A reinvestigation of beta-gallium oxide. Acta Crystallogr C, 1996, 52(6), 1336
- [33] Janotti A, Van de Walle C G. Oxygen vacancies in ZnO. Appl Phys Lett, 2005, 87(12), 122102
- [34] Oshima T, Kaminaga K, Mukai A, et al. Formation of semi-insulating layers on semiconducting β-Ga₂O₃ single crystals by thermal oxidation. Jpn J Appl Phys, 2013, 52(5R), 051101
- [35] Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga₂O₃. Appl Phys Lett, 2010, 97(14), 142106
- [36] Hajnal Z, Miró J, Kiss G, et al. Role of oxygen vacancy defect states in then-type conduction of β -Ga₂O₃. J Appl Phys, 1999, 86(7), 3792

- [37] Fleischer J G M, Meixner H. H₂-induced changes in electrical conductance of β-Ga₂O₃ thin-film systems. Appl Phys A, 1992, 54, 560
- [38] Kohl F B C K A F M F C. Decomposition of methane on polycrystalline thick films of Ga₂O₃ investigated by thermal desorption spectroscopy with a mass spectrometer. Fresenius J Ana Chem, 1997, 358, 187
- [39] Schwebel M F T, Meixner H, Kohl C D. CO-sensor for domestic use based on high temperature stable Ga₂O₃ thin films. Sens Actuators B Chem, 1998, 49, 46
- [40] Ogita K H M, Nakanishi Y, Hatanaka Y. Ga₂O₃ thin film for oxygen sensor at high temperature. Appl Surf Sci, 2001, 175, 721
- [41] Guo Z, Verma A, Wu X, et al. Anisotropic thermal conductivity in single crystal β -gallium oxide. Appl Phys Lett, 2015, 106(11), 111909
- [42] Handwerg M, Mitdank R, Galazka Z, et al. Temperature-dependent thermal conductivity in Mg-doped and undoped β -Ga₂O₃ bulk-crystals. Semicond Sci Tech, 2015, 30(2), 024006
- [43] Santia M D, Tandon N, Albrecht J D. Lattice thermal conductivity in β -Ga₂O₃ from first principles. Appl Phys Lett, 2015, 107(4), 041907
- [44] Wang H. Investigation of power semiconductor devices for high frequency high density power converters. Virgina Tech, 2007
- [45] Jessen G, Chabak K D, Green A, et al. Toward realization of Ga₂O₃ for power electronics applications. The 75th IEEE Device Research Conference (DRC), 2017
- [46] Ma N, Tanen N, Verma A, et al. Intrinsic electron mobility limits in β -Ga₂O₃. Appl Phys Lett, 2016, 109(21), 212101
- [47] Oishi T, Koga Y, Harada K, et al. High-mobility β -Ga₂O₃ (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 2015, 8(3), 031101
- [48] Higashiwaki M, Kuramata A, Murakami H, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D, 2017, 50(33), 333002
- $\begin{array}{ll} \mbox{[49]} & \mbox{Tang C, Sun J, Lin N, et al. Electronic structure and optical property of metal-doped Ga_2O_3: a first principles study. RSC Adv, 2016, 6(82), 78322 \end{array}$
- [50] Peelaers H, Van de Walle C G. Brillouin zone and band structure of β -Ga₂O₃. Phys Status Solidi B, 2015, 252(4), 828
- [51] von Wenckstern H. Group-III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 2017, 3(9), 1600350
- [52] Sasaki K, Higashiwaki M, Kuramata A, et al. MBE grown Ga₂O₃ and its power device applications. J Crys Growth, 2013, 378, 591
- [53] Wong M H, Morikawa Y, Sasaki K, et al. Characterization of channel temperature in Ga₂O₃ metal–oxide–semiconductor field-effect transistors by electrical measurements and thermal modeling. Appl Phys Lett, 2016, 109(19), 193503
- [54] Wong M H, Takeyama A, Makino T, et al. Radiation hardness of Ga₂O₃ MOSFETs against gamma-ray irradiation. IEEE Device Research Conference (DRC), 2017
- [55] Green A J, Chabak K D, Heller E R, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β -Ga₂O₃ MOSFETs. IEEE Electron Device Lett, 2016, 37(7), 902
- [56] Wong M H, Nakata Y, Kuramata A, et al. Enhancement-mode Ga₂O₃ MOSFETs with Si-ion-implanted source and drain. Appl Phys Express, 2017, 10, 041101
- [57] Wong M, Goto K, Kuramata A, et al. First demonstration of vertical Ga_2O_3 MOSFET planar structure with a current aperture. IEEE Device Research Conference (DRC), 2017
- [58] Song B, Verma A K, Nomoto K, et al. Vertical Fin Ga₂O₃ power field-effect transistors with on/off ratio >10⁹. IEEE Device Research Conference (DRC), 2017
- [59] Green A J, Chabak K D, Baldini M, et al. β-Ga₂O₃ MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017, 38(6), 790

Journal of Semiconductors doi: 10.1088/1674-4926/40/1/011802 9

- [60] Krishnamoorthy S, Xia Z, Bajaj S, et al. Delta-doped β -gallium oxide field-effect transistor. Appl Phys Express, 2017, 10(5), 051102
- [61] Xia Z, Joishi C, Krishnamoorthy S, et al. Delta doped β -Ga₂O₃ field effect transistors with regrown ohmic contacts. IEEE Electron Device Lett, 2018, 39(4), 568
- [62] Hwang A V W S, Protasenko V, Rouvimov S, et al. Nanomembrane β -Ga₂O₃ high-voltage field effect transistors. IEEE Device Research Conference (DRC), 2013
- [63] Ahn S, Ren F, Kim J, et al. Effect of front and back gates on β -Ga₂O₃ nano-belt field-effect transistors. Appl Phys Lett, 2016, 109(6), 062102
- [64] Bae J, Kim H W, Kang I H, et al. High breakdown voltage quasitwo-dimensional β -Ga₂O₃ field-effect transistors with a boron nitride field plate. Appl Phys Lett, 2018, 112(12), 122102
- [65] Zhou H, Maize K, Qiu G, et al. β-Ga₂O₃ on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111(9), 092102
- [66] Zhou H, Alghamdi S, Si S W, et al. Al₂O₃/β-Ga₂O₃ (-201) interface improvement through piranha pretreatment and postdeposition annealing. IEEE Electron Device Lett, 2016, 37(11), 1411
- [67] Kamimura T, Krishnamurthy D, Kuramata A, et al. Epitaxially grown crystalline Al_2O_3 interlayer on β -Ga₂O₃ (010) and its suppressed interface state density. Jpn J Appl Phys, 2016, 55(12), 1202B
- [68] Hattori M, Oshima T, Wakabayashi R, et al. Epitaxial growth and electric properties of γ -Al₂O₃ (110) films on β -Ga₂O₃ (010) substrates. Jpn J Appl Phys, 2016, 55(12), 1202B

- [69] Zeng K, Jia Y, Singisetti U. Interface state density in atomic layer deposited SiO₂/β-Ga₂O₃ MOSCAPs. IEEE Electron Device Lett, 2016, 37(7), 906
- [70] Zeng K, Singisetti U. Temperature dependent quasi-static capacitance-voltage characterization of SiO₂/β-Ga₂O₃ interface on different crystal orientations. Appl Phys Lett, 2017, 111(12), 122108
- [71] Dong H, Mu W, Hu Y, et al. *C*–*V* and *J*–*V* investigation of HfO_2/Al_2O_3 bilayer dielectrics MOSCAPs on (100) β -Ga₂O₃. AlP Adv, 2018, 8(6), 065215
- [72] Bhuiyan M A, Zhou H, Jiang R, et al. Charge trapping in AI_2O_3/β -Ga₂O₃ based MOS capacitors. IEEE Electron Device Lett, 2018, 39(7), 1022
- [73] Yao Y, Davis R F, Porter L M. Investigation of different metals as ohmic contacts to β -Ga₂O₃: comparison and analysis of electrical behavior, morphology, and other physical properties. J Electron Mater, 2016, 46(4), 2053
- [74] Moser N A, McCandless J P, Crespo A, et al. High pulsed current density β-Ga₂O₃ MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 2017, 110(14), 143505
- [75] Sasaki K, Thieu Q T, Wakimoto D, et al. Depletion-mode vertical Ga₂O₃ trench MOSFETs fabricated using Ga₂O₃ homoepitaxial films grown by halide vapor phase epitaxy. Appl Phys Express, 2017, 10(12), 124201
- [76] Zeng K, Wallace J S, Heimburger C, et al. Ga₂O₃ MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 2017, 38(4), 513